Recent Results and Mission Update for the Atmospheric Chemistry Experiment (ACE) Kaley A. Walker^{1,2}, Chris Boone², Peter Bernath^{3,4}, Christopher Sioris⁵, and C. Thomas McElroy⁵ ¹Physics, University of Toronto; ²Chemistry, University of Waterloo; ³Chemistry and Biochemistry, Old Dominion University; ⁴Chemistry, University of York (UK); ⁵Earth and Space Science and Engineering, York University Aura Science Team Meeting - Helsinki, Finland - 13 September 2011 ### **ACE on SCISAT-1** #### **Atmospheric Chemistry Experiment (ACE) Satellite Mission:** Mission to measure atmospheric composition: profiles of trace gas species, cloud and aerosol extinction and temperature/pressure Launch date: August 12, 2003 **Orbit:** 74° inclination at 650 km Measurement mode: solar occultation #### **ACE-FTS:** - FTIR spectrometer, 2-13 microns at 0.02 cm⁻¹ resolution - 2-channel visible/NIR imager, 0.525 and 1.02 microns #### **MAESTRO:** dual UV / visible / NIR grating spectrophotometer, 285 to 1030 nm at ~1-2 nm resolution **Pointing:** suntracker in ACE-FTS #### **ACE Mission Status** - Now into 9th year in orbit designed for 2 year lifetime - Starting to see some degradation in ACE-FTS performance and MAESTRO continues to "age gracefully" - Since launch, satellite and instrument operations nominal - On 12 September 2011, SCISAT completed its 43,500th orbit! - − Profiles available for ~70% occultations - $-\sim 50\%$ of occultations occur in polar regions (> 60 degrees) - Operation of ACE mission approved until end of March 2012 - Are discussing continuation plans with CSA #### **ACE Data Products** - ACE-FTS profiles (current version 3.0; previous v2.2+updates): - Tracers: H₂O, O₃, N₂O, NO, NO₂, HNO₃, N₂O₅, H₂O₂, HO₂NO₂, N₂ - Halogen-containing gases: HCl, HF, ClONO₂, CFC-11, CFC-12, CFC-113, COF₂, COCl₂, COFCl, CF₄, SF₆, CH₃Cl, CCl₄, HCFC-22, HCFC-141b, HCFC-142b - Carbon-containing gases: CO, CH₄, CH₃OH, H₂CO, HCOOH, C₂H₂, C₂H₄, C₂H₆, OCS, HCN and pressure / temperature from CO₂ lines - Isotopologues: Minor species of H₂O, CO₂, O₃, N₂O CO, CH₄, OCS - Research species: ClO, acetone, PAN (peroxyacetyl nitrate), etc. - MAESTRO profiles (validated version 1.2; version 3.0 being tested): - O₃, NO₂, and optical depth (water vapor and aerosol for v3.0) - IMAGERS profiles (validated version 2.2; version 3.0 being tested): - Atmospheric extinction at 0.5 and 1.02 microns (aerosols in v3.0) ## **HCFC-22 Zonal Mean Climatology** • CHF₂Cl has 12 year lifetime. It was introduced as replacement for CFC-11 and CFC-12 and is now being phased out #### ACE HCFC-22 vs. GMI Combo Model • Using MERRA, over similar time periods Jan 2004-May 2011 ## **ACE Monthly CO₂: 2004 - 2008** Normal ACE-FTS retrieval uses constant CO₂ VMR to get T, p and tangent heights. Use N₂ continuum instead and then retrieve CO₂ VMR in 5-25 km altitude range. Less than 2 ppm offset between ACE and CARIBIC seen P.-Y. Foucher et al., ACP, 11, 2455-2570 (2011) ### **BORTAS Campaign** Quantifying the impact of <u>BOR</u>eal forest fires on <u>Tropospheric oxidants over the Atlantic using Aircraft and Satellites</u> (PI: Paul Palmer, Edinburgh) • UK FAAM aircraft flights in 10 July - 3 Aug. 2011 out of Halifax; • Focus on analysis of satellite data and detailed chemical modelling of fire plumes (in situ sampling, ground-based obs., modelling and satellites) | | C ₂ H ₂ | C ₂ H ₆ | CH ₃ OH | CH₄ | H ₂ CO | HCN | нсоон | HNO ₃ | N ₂ O ₅ | NO | NO ₂ | O ₃ | ocs | |----------------|-------------------------------|-------------------------------|--------------------|-------------------|--------------------|--------------------|--------------------|---------------------|-------------------------------|---------------------|---------------------|--------------------|--------------------| | Siomass Source | (87)30 | | 7.75.01 | | 1.000 | | | 0000 | 575 1525 | | - | | | | Amazon | 0.918 | 0.939 | 0.937 | 0.155 | 0.702 | 0.932 | 0.885 | 0.149 | 0.815 | 0.296 | 0.971 | -0.896 | 0.478 | | | 0.0014
(0.0360) | 0.0050
(0.0711) | 0.0212
(0.2930) | 0.2311
(51.39) | 0.0009
(0.0289) | 0.0030
(0.0374) | 0.0024
(0.0414) | 0.0006
(0.1444) | 0.0007
(0.0467) | 0.0004
(0.0379) | 0.0014
(0.1031) | -0.6813
(30.11) | 0.0002
(0.0204) | | Congo | 0.962 | 0.942 | 0.926 | 0.038 | 0.890 | 0.953 | 0.924 | -0.301 | 0.896 | 0.251 | 0.201 | -0.816 | 0.291 | | | 0.0021
(0.0247) | 0.0063
(0.1037) | 0.0192
(0.3399) | 0.0717
(71.45) | 0.0007
(0.0271) | 0.0052
(0.0942) | 0.0027
(0.0923) | -0.0010
(0.1196) | 0.0007
(0.0794) | 0.0002
(0.0405) | 0.0001
(0.1502) | -0.5374
(27.78) | 0.0002
(0.0161) | | Australia | 0.951 | 0.918 | 0.840 | 0.265 | 0.723 | 0.806 | 0.859 | -0.872 | 0.867 | 0.591 | -0.831 | -0.926 | 0.509 | | | 0.0014
(0.0178) | 0.0048
(0.0671) | 0.0098
(0.2895) | 0.2300
(69.19) | 0.0012
(0.0354) | 0.0055
(0.0662) | 0.0023
(0.0816) | -0.0010
(0.0861) | 0.0015
(0.0367) | 0.0004
(0.0094) | -0.0007
(0.0839) | -1.3131
(32.11) | 0.0001
(0.0132) | | Background | 0.442 | 0.348 | 0.586 | 0.026 | 0.303 | 0.246 | 0.322 | 0.197 | 0.065 | -0.128 | 0.221 | -0.326 | 0.046 | | | 0.0009
(0.0170) | 0.0032
(0.1109) | 0.0096
(0.1591) | 0.2413
(88.65) | 0.0024
(0.0285) | 0.0009
(0.0500) | 0.0049
(0.0704) | 0.0011
(0.1218) | 0.0004
(0.0625) | -0.0007
(0.0425) | 0.0027
(0.0967) | -0.6948
(35.79) | 0.0001
(0.0431, | | Canada Boreal | 0.719 | 0.931 | 0.846 | 0.095 | 0.832 | 0.613 | 0.928 | -0.858 | 0.005 | 0.888 | -0.885 | -0.909 | 0.019 | | | 0.0013
(0.0267) | 0.0048
(0.1065) | 0.0217
(0.6299) | 0.2857
(72.14) | 0.0011
(0.0335) | 0.0013
(0.0354) | 0.0034
(0.1074) | -0.0121
(0.0906) | 0.0001
(0.0307) | 0.0012
(0.0933) | -0.0003
(0.1028) | -2.134
(34.32) | 0.0001
(0.0331) | | Background | 0.594 | 0.512 | 0.109 | 0.136 | 0.274 | 0.360 | 0.269 | -0.231 | 0.052 | 0.209 | -0.257 | -0.555 | 0.160 | | | 0.0012
(0.0172) | 0.0071
(0.1134) | 0.0347
(0.4629) | 2.741
(93.24) | 0.0015 | 0.0005 | 0.0030
(0.0429) | -0.0084
(0.3884) | 0.0002
(0.0625) | 0.0028 | -0.0021
(0.1397) | -2.500
(127.43) | 0.0002 | K. Tereszchuk et al., ACPD, 11, 16611-16637 (2011) ### **MAESTRO** Aerosol Extinction - As part of new v3.0 aerosol products, MAESTRO aerosol extinction profiles are being calculated across the VIS band - Also, Angstrom coefficient profiles are being developed - Example showing aerosol layer (at ~16 km) from Sarychev eruption ### **Beyond ACE?** SAGE III will be deployed on ISS in ~2015 timeframe • Currently, no missions approved to continue the series of infrared solar occultation measurements Opportunities being pursued as available - mainly for ISS - Industrial and science studies for ACE-FTS and nextgeneration FTS instrument are continuing with CSA - iATMOS is being proposed to NASA Earth Venture-2 call for ISS deployment (PI: W. Randel, NCAR) - LOI submitted for ESA call for ISS experiments relevant to Global Climate Change due in early November 2011 ### Summary - ACE Instruments and satellite are continuing to function nominally and produce excellent results - Data being used for scientific and validation studies - Reprints available from http://www.ace.uwaterloo.ca - Validation results published in *Atmos*. *Chem. Phys.*: http://www.atmos-chem-phys.net/special_issue114.html #### Funding for ACE and this work provided by: - Canadian Space Agency (CSA) - Natural Sciences and Engineering Research Council of Canada - Environment Canada - Canadian Foundation for Climate and Atmospheric Sciences - Natural Environment Research Council (NERC) ## **Angstrom Coefficients**